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Franck-Condon matrix elements are calculated approximately for vibrational 
transitions of  a diatomic molecule from a bound electronic potential curve to a 
purely repulsive curve. The bound states are approached by exactly normalized 
Mil ler-Good wavefunctions uniform in both turning points. For the continuum 
wavefunction a single turning point uniform Airy approximation is taken. The 
resulting Franck-Condon matrix element is approximately done in closed form 
with the help of  a new canonical integral for a product of  harmonic oscillator 
wavefunctions and Airy functions. The degree of agreement with a closed form 
exact result is qualitatively discussed for transitions from the ground state of  a 
Morse curve to the continuum of a particular repulse exponential curve. 
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1. Introduction 

Prominent examples for the importance of bound-to-continuum Franck-Condon 
factors are given by the vacuum ultraviolet emission spectra of  excited state rare gas 
dimers (excimers). Here, the "second cont inuum" is usually attributed to bound-  
continuum transitions from low vibrational states of  either or both of the lowest 
two bound potential curves to the repulsive ground state curve of the dimer [1 ]. The 
inverse process, the continuum-to-bound transition falls into the domain of 
radiative recombination. 

Many useful approximate expressions for Franck-Condon (FC) matrix elements 
[2-7] have been developed by adopting semiclassical or uniform semiclassical 
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techniques�9 By construction, most of these expressions are the better valid the larger 
is the number of nodes involved on the bound state wavefunction. 

The aim of this paper is to derive approximate FC matrix elements just for transi- 
tions from the lowest, or the first few excited vibrational states to the continuum 
of a repulsive potential curve, a situation typically met in excimer systems (see also 
Fig. 1). The detailed plan of this paper is as follows: In Sect. 2 we derive an accurate 
closed-form expression for the normalization constant of two-turning point 
uniform Miller-Good bound state wavefunctions in an arbitrary potential well [8]. 
This expression seems to have not appeared in the literature before. For the ground 
state in a Morse well this normalization constant is used to demonstrate the excellent 
accuracy of Miller-Good functions at the two turning points of the well. 

In Sect. 3, the FC integral is formed of Miller-Good bound state- and single- 
turning point uniform continuum wavefunctions. Assuming that the Miller-Good 
function is slowly varying with the internuclear separation compared to the con- 
tinuum function, this FC integral can be done in closed form. 

Finally, in Sect. 4 the accuracy of the resulting FC matrix element is qualitatively 
checked with the help of an exact expression derived for the FC matrix element of 
a Morse ground state and the continuum state of a repulsive exponential curve 
with the same exponential parameter. 

2. Normalization of Miller-Good Bound State Functions 

Following the work of S. C. Miller and R. H. Good, Jr. [8], the wavefunction of the 
nth bound state of two particles with reduced mass m and interacting via an 
arbitrary anharmonic potential well Vl(x)  which gives rise to the two turning 
points xl, x2, x~ < x2 can be mapped on harmonic oscillator functions according to 

dz l (x)  
%~(x) = N,~[z'l(x)] - i/2 e-~112)~(X)H,~(zl(x)), z'l(x) = "-d-~-x ' (1) 

where the mapping function z l (x )  is determined by solving 

2m 
[z'l(x)]2[2n + 1 - z~(x)] = ~ - [E l (n )  - Vl(x)] (2) 

with the boundary conditions 

z~(xl<2,) = --T- V'Tn + 1, V~(x~(2,) = El(n) .  (3) 

The binding energies E~(n) are fixed by the implicit equation (WKB-condition) 

fx;2 4/2rn dx - ~  [Ez(n) - V~(x)] = zr(n + �89 n = 0, 1, 2 , . . . .  (4) 
1 

In order to satisfy the normalization condition 

(5) 
�9 o o  
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Miller and Good propose a numerical procedure to do the integral (5). That this is 
in fact not necessary is stated by the following formula, which seems not to have 
been given previously in the literature, 

f [m/hZl[dE~(n)/dn]'~ 1/z. 
N. = ~. 2"n t a,/~r J (6) 

In (6), dE~(n)[dn has to be calculated from (4) after continuation to real values of n. 

To prove (6), we note that the ~%(x) in (1) for arbitrary real values o fn  are given by 
the parabolic cylinder functions D,,(z) [8, 9], 

~%(x) = N.[z't(x) ]- l/22"/2 D.(zl(x)V'2) = N.2"12[z't(x) ]- l12q~,~(zl), (7) 

which in the variable x solve the Schr6dinger Equation 

~-~ + - ~  [E~(n) - V~(x) - 171(x)] go.(x) = 0 (8) 

with the potential correction 

h 2 d 2 
171(x) = ~ [z~(x)] 1/2 ~-~ {[z~(x)]-1/2}. (9) 

The essence of the Miller-Good approach is the neglect of the Schwarzian derivative 
contribution (9) in Eq. (8). For proving (6) one certainly needs not to do better, 
and hence, after omitting 17~, one finds from (8) and the equation obtained from (8) 
by taking a partial derivative with respect to n, the approximate Wronski relation 
[10-11] 

+~ 
h 2 dn _ [ ~n Ox %,(x) 8x#nJx=_oo (10) 

Changing in the Wronskian from the variable x to z~ = z~(x) and omitting contri- 
butions from the boundaries at x = + oo, which vanish exactly if n tends to a 
positive integer or zero, one finally obtains from (10) 

2m dE~(n) + o~ 2.N2[~b.(z) O~b.(z) ~.(z) ( l la)  
~2 dn dx~="(x) ~- "[ en ez 

oo r 

= --.-~rsg"+l dz~bZ(z), ( l lb)  
oo 

because the ~b.(z) in (7) solve the differential equation 

+ 2n + 1 - z 9" ~b.(z) = 0 (12) 

and this leads to the Wronski relation between (1 la) and (1 lb). Thus, in the limit 
of  positive integer values of n, Eqs. ( l lb) ,  (7), (1) and 

f_+ e X=H~(x) = 2'~n ! 
oo 

dx v ' ;  
o o  

precisely yield Eq. (6). 
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Inspection of Eqs. (2), (3) and (6) shows that the values of the bound state functions 
(1) at the two turning points x~, x2 can easily be calculated if xl, x2 and E d n )  in (4) 
can be found in closed form. Assuming x~, x2 and dEx(n)/dn to be known, Taylor 
expansion of (2) at xz~, gives 

, f T - m V ' l ( x l , 2 , ) }  lta 
zl(xl,2,) = I. ~ " (13) 

For  the Morse potential with the minimum separation x,~ and a > 0, 

x 
Vl(x)  = D[e  -2'~y-1~ - 2 e~'~-l)], y = - - ,  

Xra 

one finds from (4) the exact term formula 

[ El(n)  = - D  1 - n + z 0 <~ n <~ n~ , x  <<. d -  �89 
d ' 

x ta - -  
d = ~ V '2rnD,  

and from (6) 

N~ = ~ \ 2~n] a/~r ] , 

so that (13) yields 

zl(xl,~,) -- ~ ['v/2n-=- -+ - '1  J ' 

where 

[, (1 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

It is instructive to compare the values of the Miller-Good function (1) for the ground 
state n = 0 at the two turning points x l ,  x2 

x l , 2 . - 1 /2~  , . .  , { a -  �89 1 + ~)-1/6 =f l , , , (d )  (20) m ~ .0,~1,2, ,  = \ e - - ~ /  

with the corresponding values 

e - m •  + .q)]a-~/2 (21) 
g~2~(d) = [ F ( 2 d -  1)] 1/2 

of the exact Morse ground state function 

e-at (2  dt)  a- 112 x 
xl/2a- 1/2_ ~x ~ e-  ~(y- 1) = - -  (22) 

m W0 . . . .  tk J =  [ ~ - j - ~ l - j ~ l ~ '  t =  ' Y Xm 

at x = x~, x2. The excellent agreement off,r with g~c2~(d) is shown in Table 1 
for various values of d. Note also the asymmetry betweenf~ and f2, which reflects 
the anharmonicity of the Morse well (14) especially at low values of d. 
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Table 1. Values of the exact Morse ground state function gl<2~(d), Eq. (21) and 
the corresponding values of the Miller-Good function fl<2)(d), Eq. (20), for 
various values of the Morse parameter d, Eq. (16) 

d gt fl gx fa 

1 0.2989 0.2974 0.4527 0.4613 
2 0.4367 0.4360 0.5662 0.5683 
3 0.5128 0.5123 0.6294 0.6304 
4 0.5677 0.5673 0.6759 0.6766 
5 0.6113 0.6111 0.7136 0.7140 
6 0.6480 0.6478 0.7455 0.7459 
8 0.7079 0.7077 0.7985 0.7988 

10 0.7564 0.7563 0.8421 0.8422 
15 0.8499 0.8498 0.9272 0.9273 
20 0.9210 0.9210 0.9930 0.9930 
25 0.9792 0.9792 1.0473 1.0473 
30 1.0290 1.0290 1.0940 1.0940 
35 1.0727 1.0727 1.1352 1.1352 

I t  should be stressed however, that  in order  to calculate the mapping z l ( x )  and its 
derivative z'~(x) for values o f  x away f rom the turning points xl, xz one is in general 
forced to set up numerical routines for solving the implicit mapping  equations 
given in [8]. That  this can be done quite efficiently is obvious and will be shown by 
examples in a subsequent publication. 

3. Approximate Calculation of the FC Matrix Element 

In  this section FC  matrix elements are to be evaluated approximately for transitions 
f rom one of  the lower vibrational states in an excimer curve to the cont inuum of  a 
purely repulsive ground state curve V(x ) ,  a situation typically as shown in Fig. 1. 
The lower repulsive potential curve V ( x )  has only a single turning point  and hence 
the cont inuum wave function ~bE(x) at energy E above V = 01 may  very well be 
approximated by the uniformly valid Airy-function expression [12-13] 

~ ( x )  = ~ -  L-a"Y-J d i ( - z ( x ) ) ,  (23) 

where the mapping  function z ( x )  satisfies 

[~x  x)] 2re[E- V(x)], ~(x) = ~- (24) 

and 

z(xo) = 0 (25) 

1 The continuum energy E is normalized such that E = 0 coincides with V(x) = 0 at x = + oo. 
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at the turning point Xo defined by 

E = V(xo). (26) 

In contrast to Eq. (2), (24) can easily be solved for z, viz. 

~ - [ E -  V(t)] , for xo ~< x ~< +oo 

z<x)-[ i f.,o</Zm ]=,. 
- ~ ~- [V( t )  - E] , for  - o o  ~< x ~< Xo. (17) 

The continuum function ~bE(x) in (23) is energy normalized according to 

_~= axr = ~ ( e '  - e )  (28) 

which can be seen from the behaviour at large values of x, [14], 

J V'2--~E, (29) 
2m 1 

~ b E ( x ) ~  ~ s i n ( k x + ~ ) ,  k =  

=Tr k fo= d (  ( V ( t ) ! ) )  = x2[1 - _V_~]. (30) 4 2 dtt ~ In 1 ~ , t 2 

From Eqs. (1) and (23) one obtains the FC matrix element 

M . ( E )  = -=  dx~*(x)r  = W N .  - .  dx  \ ~ !  

x e-z~/2H,~(zl)di(-z), (31) 

which would yield very accurate results if the integration would be carried out 
numerically. Examples of this kind as well as for bound-bound and continuum- 
continuum transitions will be presented in forthcoming publications. 

The aim now is to show that if the bound state part ~%(x) in (31) is sufficiently 
slowly varying in x compared with the continuum part ~b~(x), the integral (31) can 
be done in a simple approximation. A typical situation of this kind is depicted in 
Fig. I. The ground state function in the upper Morse well varies in x so slowly that 
the continuum function of the lower repulsive curve averages out essentially all 
contributions to the integral (31) away from the turning point of the lower curve. 
Adopting this random phase argument, one may thus change in (31) from the 
variable x to z(x) (of. (27)), expand the integrand around z = 0, i.e. x = xo, and 
obtain the approximate form 

M.(E)  = J ~ N .  [z(Xo)]Z/= j_  r += dz e-I/z('+~ + a z ) d i ( - z )  (32) 

with 

dzl  zi(xo) 
p = zl(xo), (r = dz ==o = z~(Xo)" (33) 
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u l  

r ~ 7 

I i 

Fig. 1. Potential curves and wavefunc- 
tions for bound-to-continuum transitions 
in an excimer system (Xe-Xe). The upper 
curve is a Morse potential and the lower 
curve is an exponential potential 

0 

2.5 3. 3.5 4. [~]  

The " c a n o n i c a l "  integral in (32) can be done in closed form as is shown in 
Appendix  1. For  brevity, the result is given for n = 0 only, viz. 

2 [z'~(Xo)] -~/2 (p  ~r-6\ ./p ~_~_~) 
Mo(E) = ~ V/~No [z,(xo)]m % exp ~ + - ~ - ) d ~  ~ + �9 (34) 

4. Comparison with an Exact FC Matrix Element 

I f  the repulsive, lower curve in Fig. 1 is the exponential  function 

V(x) = V0 e -~xlx.,~, /3 > 0, (35) 

the exact solution r of the Schr6dinger equation is well known [15]. Energy 
normalized according to (28), (29), eE(x) becomes 

~E(x) -- 2 ['~-~-fl sinh ~--~-)/2wa\ )1/2~ Kai~,B (2~ exp (--2-~m)) ' / 3 X  (36) 

where K~(z) is a modified Bessel function [9] and 

a = -~- ~2-m--E, b = ~ /2 - -m~o .  ( 3 7 )  

With the exact ground state function (22) of  the Morse  well (14) one thus obtains, 
af ter  introducing z = 2 d e x p  [-~(x/xm- 1)] as integration variable, the FC 
matr ix  element 

Mo(E) 2Xm f m sinh (2zca//3)'['./2 f ~ dzza - a/2 
= ~ [ c~/3r(2d - 1) J e-Z/2Kz,ale(~zU), (38) 
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where 

2b e-  a/~(2d)- B/2~ (39) 

and 

t~ = 2~" (40) 

There are two special values o f f  for which the integral in (38) can be expressed in 
closed form in terms of higher transcendental functions, namely t~ = �89 and F = I. 
The case tz = 1 can be done by use of the Laplace transform given on page 315 
of [9]. The value F = 1 or/3 = 2ix however would correspond to a quite steep lower 
curve, which is unrealistic in excimer systems and hence is not considered here. 
For tL = �89 or/3 = Ix one finds from [9] p. 313 the exact formula 

2xm -{msinh(2~ra//3)\'/L~a-'~--~Z ~) [ " e '2/' I p ( d _  �89 + ia)  [ wl_a,.,~/~)(~) ~z Mo(E) = 

(41) 

Such a nice-looking closed form result is however of little value if a stable numerical 
algorithm to tabulate Whittaker's function in (41) is not available. We had precisely 
this experience, when we first tried to calculate W_o,~(r) for realistic parameter 
values like 8 = 25, p = 20 and r = 128 by application of a numerical routine 
published by Luke [16], pp. 252. I regret that we therefore have to fall back on a 
stopgap, the uniform approximation to W_o,~D(r) presented in Appendix 2, which 
will be used for a qualitative test of expression (34). 

In detail, we have applied two simple approx!mations for the mapping function 
zl(x) and its derivative z'~(x) instead of solving (2) and (3) for the ground state of 
the Morse well (14) accurately, i.e. 

O(x  0] , ]  
= T 

(42) 

o 

51(x) = ~ ~ - 1 , ~i(x) - - ~Tx,~' (43) 

where ~7 is defined by (19). 

Approximation (42) is correct at the two turning points 

x~,l , = Xm - Xm In (1 T ~), (44) 
IX 

and (43) arises on replacing the Morse well (14) by the harmonic potential 

mW2 (X -- Xm) 2 -  D, ~ 2 = 2ixD (45) 
V(x) = ~ mX2m" 



Bound-Continuum Vibrational Transitions 319 

Fig. 2. The squared expressions (41) and (34) 
calculated from (42) or (43) are plotted versus 
E in eV as the full, the dashed and the dot- 
dashed line respectively. All squared matrix 
elements are multiplied by the factor h2]mx2~ 

o. o.1 0.2 0.3[ev] 

E n e r g y  

The turning point of the lower curve (35) is according to (26) at 

xo = ~-~ In (--~) �9 (46) 

With (42), (43), (46) and (33), M0(E) in (34) can be evaluated. One should recall 
that (42) and (43) are only approximate solutions of  (2) and hence a comparison 
with the exact expression (41) for/3 = cr can be only qualitative. In Fig. 2 the 
quantity (h2/mx~)[Mo(E)] 2 obtained from (41) and evaluated as described in 
Appendix 2 is plotted as the full line versus the energy E in eV. The corresponding 
expressions found from (34) by using either (42) or (43) are shown as the dashed 
resp. the dot-dashed line. The parameters % d, Vo and xm in (14), (16) and (35) 
have been chosen according to c~ = 14, d = 26, Vo = 10 s eV and Xr, = 3 A. One 
notes that the different approximations to zl(x) and z'~(x), (42) and (43) tend to the 
exact expression (41) at different energies. This indicates that if a numerically exact 
solution of  (2) is used instead of  (42) or (43), the approach (34) should be accurate 
over a large range of energies [17]. That this conjecture is in fact correct, will be 
shown in a subsequent publication. 

Acknowledgement. The author is grateful to R. Wanik for his continuous help during the 
numerical calculations. 

Appendix 1 

To calculate the "canonical" integral (32) it is worth while to consider the case 
n = 0 first 

�9 ~o(X, y)  = dz e-ll2~=+u")2di(-z). (47) 
oo  
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With 

d t i ( - z )  = ~ dt exp i ~ - z t  (48) 

in (47) the z-integration can be done 

:,~"o(X, y)  y~/~-~ dt exp t y + ixyt  - �89 

and this integral can be transformed into the representation (48) by the substitution 
t = u - (i/2y 2) 

= 1 du exp + iu + ~Uo(x, y) y~/~-~ ~ 

which yields the result 

+) o~0(x, y) = ~ / ~  exp x + d ,  + �9 (49) 
Y 

For n = 0, 1, 2, 3 . . . .  the integral (32) 

~ . ( x ,  y) = f + /  dz e-1/2(*+uZ)2H.(x + y z ) ~ C i ( - z )  (50) 

can be obtained from 

F( t )  = ;Un(x, y)  ~ = dz e 2~ e-l l2c~+~z)~Ci(-z)  (51) 
~ = 0  --cO 

because of 

e 2~t-t= = H.(w)  -~!" (52) 

The integral (51) is easily done by use of (49) and one finds after Taylor expansion 
of the resulting F( t )  with the help of (52) and some straightforward algebra 

h:=O 

x d i ( . - k ) ( y  + + )  (53) 

where 

d di(m_l)(z),  di~m)(z)  = d # ~  = d i ( z ) .  (54) 

Appendix 2 

The Whittaker function W_<~(r), 3 > 0, p > 0, r >/ 0, solves the differential 
equation [9] 

( d~ I a + + + P ~  (55) 
-d7 ~ 4 r ~ !  w_~ , , . ( r )  = O 
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and has the asymptotic behaviour 

W_~,,o(r),~-=~e-r'Zr-~ O ( ~ ) ] .  (56) 

To get rid of the singallarity of (55) at r = 0, one may transform according to [19] 

r = e':, W_~.t,(r) = e~12~lr(x), (57) 

and apply a uniform Airy approximation [18] to the differential equation resulting 
from (55). This approach is thus uniformly valid for - m  <~ x ~< + oo, or 
0 ~< r < + oo. After some calculation, finally transforming back to the variable r 
and matching with (56) one finds 

r 

= V ~  e~ir2l 4 W-~ao(r) 

8 
c =  8 - ~ 1 n ( 8 2 + P 2 ) -  

r 2t(r) Iq 114 
dd(t(r)) 

+ ~r - p2J 
~r 

t(r) = f [~f(r)]~/3 for rl ~< r ~< + oo 
~-[}g(r)] 2/a for 0 ~ r ~< rl 

r~ = 2 ( v ' ~  + p~ - 8) 

i ( r )  = ~ / ~  + 8 r -  p=+  8 arccosh \~/a-~-g-7! 

+ p{arcsin [ 2p2 - 8r 

- - J  0 2 -  r24 - - 3 r +  8{arcsin \a/82-W-4--~P=]/8+ r/2 ~ - - 2 }  g(r) = 

2p / ~ _ p2)} + o{ln (2-~- - 8 + r ~l P - Sr + ~ )  �89  
J 

This approximation differs from 
behaviour of W_6,~p(r) at r = 0. 

(58) 

(59) 

(60) 

(61) 

(62) 

(63) 

[18] because more attention is paid to the 
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